• Предмет: Экология:Экология
  • Вид работы: Контрольная
  • Год написания: 2014
  • Страниц: 26

Общая экология

Источники и слагаемые современной экологии в процессе экологизации знаний и практики.

В последние десятилетия, когда угроза глобального экологического кризиса заставила рассматривать человеческую деятельность на планете с позиций законов живой природы, произошло быстрое расширение экологии. Вобрав в себя проблемы окружающей среды, она не только использует достижения других разделов биологии, но и вторгается в смежные с биологией дисциплины — в науки о Земле, в физику и химию, в различные инженерные отрасли, предъявляет новые требования к информатике и вычислительной технике, находит приложения за пределами естественных наук — в экономике, политике, социологии, этике. Этот процесс проникновения идей и проблем экологии в другие области знания получил название экологизации.

Экологизация отражает потребность общества в объединении науки и практики для предотвращения экологической катастрофы. Обращение разных наук к проблемам экологии и окружающей человека среды содержит постановку и решение многих практических задач. Поэтому идет речь об экологизации экономики, производства и техники. Экология превратилась из частного раздела биологии, знакомого узкому кругу специалистов, в обширный и еще окончательно не сформировавшийся комплекс фундаментальных и прикладных дисциплин, который Н.Ф. Реймерс (1992) назвал мегаэкологией, т.е. «большой экологией». Учитывая современное широкое понимание научного термина «экология», наиболее целесообразно использовать определение, которое дал известный американский эколог Ю. Одум: Экология – междисциплинарная область знания об устройстве и функционировании многоуровневых систем в природе и обществе в их взаимосвязи.

Основные разделы современной экологии: общая (теоретическая) экология, биоэкология, геоэкология, экология человека и социальная экология, прикладная экология. Каждый раздел имеет свои подразделы и связи с другими частями экологии и смежными науками.

Общая экология посвящена объединению разнообразных экологических знаний на едином научном фундаменте. Ее ядром является теоретическая экология, которая устанавливает общие закономерности функционирования экологических систем. Многие природные экологические процессы происходят очень медленно и обусловлены множеством факторов. Для изучения их механизмов недостаточно одних натурных наблюдений, нужен эксперимент. Экспериментальная экология обеспечивает методическим инструментарием различные разделы науки. Но возможности эксперимента в экологии ограниченны. Поэтому широко применяется моделирование, в частности математическое. Вместе с обработкой информации и количественным анализом фактического материала оно входит в раздел теоретической экологии, который называют математической экологией.

Биоэкология «классическая» экология, сформировавшаяся в рамках биологии, представляет собой достаточно цельную область естествознания. Она посвящена взаимодействиям со средой надорганизменных биологических систем всех уровней.

В ней выделяются:

  • экология отдельных особей как представителей определенного вида организмов — аутоэкология;

  • экология генетически однородных групп организмов одного вида, имеющих общее место обитания, — популяционная экология;

  • экология многовидовых сообществ, биоценозов — синэкология;

  • учение об экологических системах — биогеоценология.

Другой принцип деления относится к таксономическим группам организмов — царствам бактерий, грибов, растений, животных и к более мелким систематическим категориям: типам, классам, отрядам. Например, экология водорослей, экология насекомых, экология птиц, экология китов и т.п. Еще один раздел составляет эволюционная экология — учение о роли экологических факторов в эволюции. Именно в биоэкологии на основе изучения роли потоков веществ, энергии и информации в жизнедеятельности организмов формируется представление об экологии как об экономике природы.

Подразделение производится также по типу среды обитания — наземной (суши), почвенной, пресноводной, морской; по принадлежности сообществ организмов к разным природно-климатическим зонам (экология тундры, тайги, степей, пустынь, гор, тропических лесов) и типам ландшафтов (экология речных долин, морских берегов, болот, островов, коралловых рифов и т.п.). Эту совокупность приложений иногда называют географической экологией, илигеоэкологией.

На стыке биоэкологии и геохимии Земли на основе изучения роли живых организмов в планетарной трансформации солнечной энергии и в круговороте химических элементов возниклоучение о биосфере глобальной экологической системе. Современная глобалистика существенно расширила горизонты экологии и усилила ее проблемную направленность.

В сумму экологических знаний несколько отдельно от традиционной биоэкологии входитэкология человека комплекс дисциплин, исследующих взаимодействие человека как индивида (биологической особи) и личности (социального субъекта) с окружающей его природной и преобразованной самим человеком средой. Важной особенностью экологии человека является социобиологический подход — правильное уравновешивание биологических и социальных аспектов.

Социальная экология как часть экологии человека — это объединение научных отраслей, изучающих связь общественных структур (начиная с семьи и других малых общественных групп) с природной и социальной средой их окружения. К этому объединению относятся экология народонаселения — экологическая демография и экология человеческих популяций. При этом рассматривается как влияние среды на общество, так и воздействие общества на среду.

Прикладная экология большой комплекс дисциплин, связанных с различными областями человеческой деятельности и взаимоотношений между человеческим обществом и природой. Она формирует экологические критерии экономики, исследует механизмы антропогенных воздействий на природу и окружающую человека среду, следит за ее качеством, обосновывает нормативы неистощительного использования природных ресурсов, осуществляет экологическую регламентацию хозяйственной деятельности, контролирует экологическое соответствие различных планов и проектов, разрабатывает технические средства охраны окружающей среды и восстановления нарушенных человеком природных систем. Выделяются следующие разделы прикладной экологии: инженерная, сельскохозяйственная, биоресурсная и промысловая, коммунальная, медицинская.

Инженерная экология — сравнительно новое направление экологической науки, изучающая взаимодействия техники и природы, закономерности формирования региональных и локальных природно-технических систем и способы управления ими в целях защиты природной среды и обеспечения экологической безопасности. Инженерная экология призвана обеспечить соответствие техники и технологии промышленных объектов экологическим требованиям. В ее сферу входит комплекс взаимосвязанных задач:

  • регламентация экологически безопасного производственного освоения территорий, размещения и строительства хозяйственных объектов;

  • оптимизация отраслевой структуры производства;

  • определение допустимой техногенной нагрузки на территории, контроль и регламентация материально-энергетических потоков производства и техногенных эмиссии (т.е. испускания, выброса побочных продуктов) от различных инженерных объектов;

  • экологизация производства, создание ресурсосберегающих и малоотходных технологий, экологически чистых материалов и продуктов производства;

  • экологическая безопасность территориальных промышленных комплексов, производственных процессов, сооружений, машин и изделий;

  • инженерно-экологическое обеспечение производства, разработка методов инженерно-экологической профилактики, восстановления и реконструкции ландшафтов.

Центральное место в сфере инженерной экологии занимает промышленная экология — область прикладной экологии, которая изучает воздействия промышленности на природу, окружающую человека среду, разрабатывает средства регламентации этих воздействий и защиты от них окружающей среды. С промышленной экологией тесно связаны экологические аспекты энергетики, транспорта, строительства, горного дела и т.п. Инженерной экологии приходится также иметь дело с влиянием экологических факторов и различных живых организмов на инженерные объекты.

Сельскохозяйственная экология в своей значительной части сливается с биологическими основами земледелия (агроэкология) и животноводства (экология сельскохозяйственных животных). Экосистемный подход обогащает агробиологию принципами и средствами рациональной эксплуатации земельных ресурсов, повышения продуктивности и получения экологически чистой продукции.

Биоресурсная и промысловая экология изучает условия, при которых эксплуатация биологических ресурсов природных экосистем (лесов, континентальных водоемов, морей, океана) не приводит к их истощению и нарушению, утрате видов, уменьшению биологического разнообразия. В задачи этой дисциплины входят также разработка методов восстановления и обогащения биоресурсов, научное обоснование интродукции и акклиматизации растений и животных, создания заповедников.

Экология поселений, коммунальная экология — разделы прикладной экологии, посвященные особенностям и влияниям различных факторов искусственно преобразованной среды обитания людей в жилищах, населенных пунктах, в городах (урбоэкология).

Медицинская экология — область изучения экологических условий возникновения, распространения и развития болезней человека, в том числе острых и хронических заболеваний, обусловленных природными факторами и неблагоприятными техногенными воздействиями среды. Медицинская экология включает в качестве раздела рекреационную экологию, т.е. экологию отдыха и оздоровления людей, смыкающуюся с курортологией.

Из этого перечня видно, что экологизации подверглись многие науки и сферы практической деятельности. В их пограничных зонах возникают новые дисциплины. Геоэкология тесно взаимодействует с биогеографией — наукой о географическом распределении живых организмов; многие разделы этих дисциплин накладываются друг на друга. Это же можно сказать и об экологии человека, с одной стороны, и социологии, антропологии, с другой.

Еще теснее переплетаются с родственными дисциплинами ветви прикладной экологии. Ее экономические аспекты изучаются быстро развивающейся экономикой природопользования. Уже упомянута сопряженность сельскохозяйственной экологии с агробиологией. Экология города имеет много общего с коммунальной гигиеной. Медицинская экология в большой мере опирается на токсикологию, патологию и эпидемиологию. Большинство требований промышленной экологии совпадает с нормами безопасности и культуры производства, гигиены труда и производственной санитарии, эргономики и безопасности жизнедеятельности.

Все это отнюдь не свидетельствует о размывании предмета экологии. Напротив, происходит интеграция знаний: в пограничных областях происходит взаимное обогащение наук. Размах экологизации указывает на то, что экология претендует на лидирующее положение в современной науке и способствует синтезу фундаментальных знаний о природе и обществе. По выражению Н.Ф. Реймерса (1994) экология «выросла из коротких штанишек, надетых на нее Э.Геккелем, но еще не удостоилась нового костюма» — научного признания, соответствующего ее общественной значимости. Формирование фундаментальных теоретических основ экологии находится еще в самом начале. Приведенный выше перечень показывает, что по системной совокупности объектов «большая экология» — это одна из самых сложных синтетических наук, требующая универсальной подготовки и глубоких профессиональных знаний.

Главные и стратегические задачи экологии.

Главной задачей современной экологии как науки является консолидация различных ее разделов и огромного фактического материала на единой теоретической платформе, сведение их в систему, отражающую все стороны реальных взаимоотношений природы и человеческого общества.

Это необходимо для понимания современных экологических проблем планеты, выработки новой экологической идеологии и методологии, правильной организации экологического образования и практической деятельности в области природопользования. В научно-практическом плане общие задачи современной экологии в ее широком понимании можно сформулировать следующим образом:

  • Разработка теории и методов оценки устойчивости экологических систем на всех уровнях, включая биосферный.

  • Исследование регуляции численности популяций, биологического разнообразия и механизмов его поддержания, регулирующего воздействие биоты на окружающую среду.

  • Всеобъемлющая диагностика состояния природы планеты и ее ресурсов; определение порога выносливости биосферы по отношению к антропогенной нагрузке, т.е. к тем помехам и утратам, которые обусловлены человеческой деятельностью, и выяснение степени обратимости этих изменений.

  • Разработка прогнозов изменений устойчивости, продукционного потенциала наиболее важных природных комплексов и биосферы в целом, а также регионального и глобального состояния окружающей человека среды при разных сценариях экономического и социального развития разных стран, регионов и человечества в целом.

  • Отказ от природопокорительской идеологии; формирование новой идеологии и методологии эксцентризма, связанной с переходом к постиндустриальной цивилизации и направленной на экологизацию экономики, производства, техники, политики, образования.

  • Разработка и совершенствование методов управления качеством окружающей среды.

  • Выработка критериев оптимизации — выбор наиболее согласованного с экологическим императивом и экологически ориентированного социально-экономического развития общества.

  • Формирование экологического мировоззрения и такой стратегии поведения человеческого общества, такой экономики и таких технологий, которые приведут масштабы и характер хозяйственной деятельности в соответствие с экологической выносливостью природы и предотвратят глобальный экологический кризис.

Стратегической задачей экологии считается развитие теории взаимоотношения природы и общества на основе нового взгляда, рассматривающего человеческое общество как неотъемлемую часть биосферы

Классификация абиотических экологических факторов.

Абиотическими факторами называют всю совокупность факторов неорганической среды, влияющих на жизнь и распространение животных и растений (В.И. Коробкин, Л.В. Передельский, 2000).

Среди них различают химические и физические факторы.

Химические факторы — это те, которые происходят от химического состава среды. Они включают химический состав атмосферы, вод и почвы и т.д.

Физические факторы — это те, источником которых служит физическое состояние или явление (механическое, волновое и др.). Это температура, давление, ветер, влажность, радиационный режим и др. Строение поверхности, геологические и климатические различия обусловливают большое разнообразие абиотических факторов.

Среди химических и физических факторов среды выделяют три группы факторов: климатические, факторы почвенного покрова (эдафические) и водной среды.

I. Главнейшие климатические факторы:

1. Лучистая энергия Солнца.

Преимущественное значение для жизни имеют инфракрасные лучи (длина волны больше 0,76 мкм), на долю которых приходится 45 % всей энергии Солнца. В процессах фотосинтеза наиболее важную роль играют ультрафиолетовые лучи (длина волны до 0,4 мкм), составляющие 7 % энергии солнечной радиации. Остальная часть энергии приходится на видимую часть спектра с длиной волны 0,4 — 0,76 мкм.

2. Освещенность земной поверхности.

Она играет важную роль для всего живого, и организмы физиологически адаптированы к смене дня и ночи. Практически у всех животных существуют суточные ритмы активности, связанные со сменой дня и ночи.

3. Влажность атмосферного воздуха.

Связана с насыщением воздуха водяными парами. В нижних слоях атмосферы (высотой до 2 км) концентрируется до 50% всей атмосферной влаги.

Количество водяного пара в воздухе зависит от температуры воздуха. Для конкретной температуры существует определенный предел насыщения воздуха парами воды, который называют максимальным. Разность между максимальным и данным насыщением воздуха парами воды называется дефицитом влажности (недостатком насыщения). Дефицит влажности являетсяважным экологическим параметром, так как характеризует две величины: температуру и влажность.

Известно, что повышение дефицита влажности в определенные отрезки вегетационного периода способствует усиленному плодоношению растений, а у некоторых насекомых приводит к «вспышкам» размножения.

4. Осадки.

Из-за конденсации и кристаллизации паров воды в высоких слоях атмосферы формируются облака и атмосферные осадки. В приземном слое образуются росы и туманы.

Влага — основной фактор, определяющий разделение экосистем на лесные, степные и пустынные. Годовая сумма осадков ниже 1000мм соответствует стрессовой зоне для многих видов деревьев, а предел устойчивости большинства из них составляет около 750 мм/год. В то же время у большинства злаков такой предел значительно ниже – примерно 250 мм/год, а кактусы и другие пустынные растения способны расти при 50- 100 мм осадков в год. Соответственно, в местах с количеством осадков выше 750 мм/год обычно развиваются леса, от 250 до 750 мм/год- злаковые степи, а там, где их выпадает еще меньше, растительность представлена засухоустойчивыми культурами: кактусами, полынями и видами перекати — поле. При промежуточных значениях годовой суммы осадков развиваются экосистемы переходного типа (лесостепи, полупустыни и т.д.).

Режим осадков является важнейшим фактором, определяющим миграцию загрязняющих веществ в биосфере. Осадки — одно из звеньев в круговороте воды на Земле.

5. Газовый состав атмосферы.

Он относительно постоянен и включает преимущественно азот и кислород с примесью углекислого газа, аргона и других газов. Кроме того, в верхних слоях атмосферы содержится озон. В атмосферном воздухе присутствуют также твердые и жидкие частицы.

Азот участвует в образовании белковых структур организмов; кислород обеспечивает окислительные процессы; углекислый газ участвует в фотосинтезе и является естественным демпфером теплового излучения Земли; озон является экраном ультрафиолетового излучения. Твердые и жидкие частицы влияют на прозрачность атмосферы, препятствуя прохождению солнечных лучей к поверхности Земли.

6. Температура на поверхности земного шара.

Этот фактор тесно связан с солнечным излучением. Количество тепла, падающего на горизонтальную поверхность, прямо пропорционально синусу угла стояния Солнца над горизонтом. Поэтому в одних и тех же районах наблюдаются суточные и сезонные колебания температуры. Чем выше широта местности (к северу и югу от экватора), тем больше угол наклона солнечных лучей к поверхности Земли и тем холоднее климат.

Температура, так же как и осадки, очень важна для определения характера экосистемы, правда, температура играет в каком-то смысле вторичную роль по сравнению с осадками. Так, при их количестве 750 мм/год и более развиваются лесные сообщества, а температура лишь обусловливает, какой именно тип леса будет формироваться в регионе. Например, еловые и пихтовые леса характерны для холодных регионов с мощным снежным покровом зимой и коротким вегетационным периодом, т. е. для севера или высокогорий. Листопадные деревья также в состоянии переносить морозную зиму, но требуют более долгого вегетационного периода, поэтому преобладают на умеренных широтах. Мощные вечнозеленые широколиственные породы с быстрым ростом, не способные выдержать даже кратковременных заморозков, доминируют в тропиках (вблизи экватора). Точно также любая территория с годовой суммой осадков менее 250 мм представляет собой пустыню, но по своей биоте пустыни жаркого пояса существенно отличаются от свойственных холодным регионам.

7. Движение воздушных масс (ветер).

Причина ветра — неодинаковый нагрев земной поверхности, связанный с перепадами давления. Ветровой поток направлен в сторону меньшего давления, т.е. туда, где воздух более прогрет. В приземном слое воздуха движение воздушных масс оказывает влияние на все параметры: влажность, и т.д.

Ветер — важнейший фактор переноса и распределения примесей в атмосфере.

8. Давление атмосферы.

Нормальным считается давление 1 кПа, соответствующее 750,1 мм. рт. ст. В пределах земного шара существуют постоянные области высокого и низкого давления, причем в одних и тех же точках наблюдаются сезонные и суточные минимумы и максимумы давления.

II. Абиотические факторы почвенного покрова (эдафические)

Эдафические факторы — это совокупность химических, физических и других свойств почв, оказывающих воздействие как на организмы, живущие в них, так и на корневую систему растений. Из них важнейшими экологическими факторами являются влажность, температура, структура и пористость, реакция почвенной среды, засоленность.

В современном понимании почва — это естественноисторическое образование, возникшее в результате изменения поверхностного слоя литосферы совместным воздействием воды, воздуха и живых организмов (В. Коробкин, Л. Передельский). Почва обладает плодородием, т.е. дает жизнь растениям и, следовательно, пищу животным и человеку. Она состоит из твердой, жидкой и газообразной компонент; содержит живые макро- и микроорганизмы (растительные и животные).

Твердая компонента представлена минеральной и органической частями. В почве больше всего минералов первичных, оставшихся от материнской породы, меньше — вторичных, образовавшихся в результате разложения первичных. Это глинистые минералы коллоидных размеров, а также минералы — соли: карбонаты, сульфаты и др.

Органическая часть представлена гумусом, т.е. сложным органическим веществом, образовавшимся в результате разложения отмершей органики. Содержание его в почве колеблется от десятых долей до 22 %. Он играет важную роль в плодородии почвы благодаря питательным элементам, которые он содержит.

Почвенная биота представлена фауной и флорой. Фауна — это дождевые черви, мокрицы и др., флора — это грибы, бактерии, водоросли и др.

Всю жидкую компоненту почв называют почвенным раствором. Он может содержать химические соединения: нитраты, бикарбонаты, фосфаты и др., а также водорастворимые органические кислоты, их соли, сахара. Состав и концентрация почвенного раствора определяют реакцию среды, показателем которой является величина рН.

Почвенный воздух обладает повышенным содержанием СО2, углеводорода и водяного пара. Все эти элементы определяют химические свойства почвы.

Все свойства почвы зависят не только от климатических факторов, но и от жизнедеятельности почвенных организмов, которые механически перемешивают ее и перерабатывают химически, создавая в конечном итоге необходимые для себя условия. При участии организмов в почве происходит постоянный круговорот веществ и миграция энергии. Круговорот веществ в почве можно представить следующим образом (В.А. Радкевич).

Растения синтезируют органическое вещество, а животные производят механическое и биохимическое разрушение его и как бы подготавливают его для гумусообразования. Микроорганизмы синтезируют почвенный гумус и затем разлагают его.

Почва обеспечивает водоснабжение растений. Значение почвы в водоснабжении растений тем выше, чем она легче отдает им воду. Это зависит от структуры почвы и степени набухаемости ее частиц.

Под структурой почвы следует понимать комплекс почвенных агрегатов различной формы и величины, образовавшихся из первичных механических элементов почвы. Различают следующие структуры почв: зернистая, пылеватая, ореховатая, комковатая, глыбистая.

Основной функцией высших растений в почвообразовательном процессе служит синтез органического вещества. Это органическое вещество в процессе фотосинтеза накапливается в надземных и подземных частях растений, а после их отмирания переходит в почву и подвергается минерализации. Скорость процессов минерализации органического вещества и состав образующихся при этом соединений во многом зависят от типа растительности. Продукты разложения хвои, листьев, древесина травянистого покрова различны как по химизму, так и по влиянию на процесс почвообразования. В сочетании с другими факторами это приводит к формированию различных типов почв.

Главная функция животных в почвообразовательном процессе — это потребление и разрушение органического вещества, а также перераспределение запасов энергии. Большую роль в процессах почвообразования играют подвижные почвенные животные. Они разрыхляют почву, создают условия для ее аэрации, механически перемещают в почве органические и неорганические вещества. Например, дождевые черви выбрасывают на поверхность до80 – 90 /га материала, а степные грызуны перемещают вверх и вниз сотни м3 грунта и органического вещества.

Влияние климатических условий на процессы почвообразования, безусловно, велики. Количество атмосферных осадков, температура, приток лучистой энергии — света и тепла — обусловливают образование растительной массы и скорость разложения растительных остатков, от которых зависит содержание перегноя в почве.

В результате перемещения и превращения веществ почва расчленяется на отдельные слои, или горизонты, сочетание которых составляет профиль почвы.

Поверхностный горизонт, подстилка или дернина, состоит большей частью из свежеопавших и частично разложившихся листьев, веток, останков животных, грибов и других органических веществ. Окрашен обычно в темный цвет — коричневый или черный. Лежащий под ним гумусовый горизонт А1, как правило, представляет собой пористую смесь частично разложившегося органического вещества (гумуса), живых организмов и некоторых неорганических частиц. Обычно он более темный и рыхлый, чем нижние горизонты. В этих двух верхних горизонтах сконцентрирована основная часть органического вещества почвы и корни растений.

О почвенном плодородии многое может сказать ее цвет. Например, темно-коричневый или черный гумусовый горизонт богат органическими веществами и азотом. В серых, желтых или красных почвах органического вещества мало, и для повышения их урожайности требуются азотные удобрения.

В лесных почвах под горизонтом А1 залегает малоплодородный подзолистый горизонт А2, имеющий светлый оттенок и непрочную структуру. В черноземных, темно-каштановых, каштановых и других типах почв этот горизонт отсутствует. Еще глубже во многих типах почв расположен горизонт В — иллювиальный, или горизонт вмывания. В него вмываются и в нем накапливаются минеральные и органические вещества из вышележащих горизонтов. Чаще всего он окрашен в бурый цвет и имеет большую плотность. Еще ниже залегает материнская горная порода С, на которой формируется почва.

К физическим факторам почвы относят влажность, структуру и пористость и температуру. Доступная влажность для растений зависит от сосущейсилы корневой системы растений и от физического состояния самой воды. Почвенные частицы удерживают вокруг себя некоторое количество воды, определяющей влажность почвы. Часть ее, называемая гравитационной водой, может свободно просачиваться вглубь почвы. Это ведет к вымыванию из почвы различных минеральных веществ, в том числе азота. Вода может также удерживаться вокруг отдельных коллоидных частиц в виде тонкой прочной связанной пленки. Эту воду называют гигроскопической. Она адсорбируется на поверхности частиц за счет водородных связей. Эта вода наименее доступна для корней растений, и именно она последней удерживается в очень сухих почвах. Количество гигроскопической воды зависит от содержания в почве коллоидных частиц, поэтому в глинистых почвах ее намного больше — примерно 15 % массы почвы, чем в песчанистых — примерно 0,5 % . По мере того, как накапливаются слои воды вокруг почвенных частиц, она начинает заполнять сначала узкие поры между этими частицами, а затем распространяется во все более широкие поры. Гигроскопическая вода постепенно переходит в капиллярную, которая удерживается вокруг почвенных частиц силами поверхностного натяжения. Капиллярная вода может подниматься по узким порам и канальцам от уровня грунтовых вод. Растения легко поглощают капиллярную воду, которая играет наибольшую роль в регулярном снабжении их водой. В отличие от гигроскопической влаги эта вода легко испаряется. Тонкоструктурные почвы, например глины, удерживают больше капиллярной воды, чем грубоструктурные, такие, как пески. Вода необходима всем почвенным организмам. Она поступает в живые клетки путем осмоса. Вода также важна как растворитель для питательных веществ и газов, поглощаемых из водного раствора корнями растений. Она принимает участие в разрушении материнской породы, подстилающей почву, и в процессе почвообразования.

Структура и пористость определяют доступность для растений и почвенных животных питательных веществ. Частицы почв, связанные между собой силами молекулярной природы, образуют структуру почвы. Между ними образуются пустоты, называемые порами. Структура и пористость почвы обеспечивают ее хорошую аэрацию. Почвенный воздух так же, как и почвенная вода, находится в порах между частицами почвы. Порозность возрастает от глин к суглинкам и пескам. Между почвой и атмосферой происходит свободный газообмен, в результате чего газовый состав обеих сред имеет сходный состав. Обычно в воздухе почвы из — за дыхания населяющих ее организмов несколько меньше кислорода и больше углекислого газа, чем в атмосферном воздухе. Кислород необходим для корней растений, почвенных животных и организмов — редуцентов, разлагающих органическое вещество на неорганические составляющие. Если идет процесс заболачивания, то почвенный воздух вытесняется водой, и условия становятся анаэробными. Почва постепенно становится кислой, так как анаэробные организмы продолжают вырабатывать углекислый газ. Почва, если она небогата основаниями, может стать чрезвычайно кислой, а это наряду с истощением запасов кислорода неблагоприятно воздействует на почвенные микроорганизмы. Длительные анаэробные условия ведут к отмиранию растений.

Температура почвы зависит от внешней температуры, и на глубине 0,3 м, благодаря низкой теплопроводности амплитуда колебаний ее менее 20С (Ю.В. Новиков, 1979), что важно для почвенных животных (нет необходимости перемещаться вверх- вниз в поисках более комфортной температуры). Летом температура почвы ниже воздуха, а зимой – выше.

К химическим факторам относят реакцию среды и засоленность. Реакция среды весьма важна для многих растений и животных. В сухом климате преобладают нейтральные и щелочные почвы, во влажных районах — кислые. Поглощенные основания, кислоты и различные соли в процессе их взаимодействия с водой создают определенную концентрацию Н+ — и ОН- — ионов, которые обусловливают ту или иную реакцию почвы. Обычно различают почвы с нейтральной, кислой и щелочной реакцией.

Щелочность почвы обусловлена присутствием в поглощающем комплексе в основном Na+ — ионов. Такая почва при соприкосновении с водой, содержащей СО2, дает резко выраженную щелочную реакцию, что связано с образованием соды.

В тех случаях, когда почвенный поглощающий комплекс насыщен Са2+ и Mg2+, его реакция близка к нейтральной. Вместе с тем известно, что углекислый кальций в чистой воде и воде лишенной СО2, дает сильную щелочность. Это объясняется тем, что с увеличением содержания СО2 в почвенном растворе возрастает растворимость кальция (2+) с образованием бикарбоната, что приводит к понижению рН. Но при среднем количестве СО2 в почве реакция становится слабощелочной.

В процессе разложения растительных остатков, особенно лесной подстилки, образуются органические кислоты, которые вступают в реакцию с поглощенными катионами почв. Кислые почвы обладают рядом отрицательных свойств, всвязи с чем они малоплодородны. В такой, среде подавляется активная полезная деятельность почвенной микрофлоры. Для поднятия плодородия почв широко практикуется применение извести.

Высокая щелочность угнетает рост растений, и резко ухудшаются ее водно — физические свойства, разрушает структуру, усиливает подвижность и вынос коллоидов. Многие злаки дают лучший урожай на нейтральных и слабощелочных почвах (ячмень, пшеница), каковыми обычно являются черноземы.

В зонах недостаточного атмосферного увлажнения распространены засоленные почвы. Засоленными называют почвы с избыточным содержанием водорастворимых солей (хлоридов, сульфатов, карбонатов). Они возникают вследствие вторичного засоления почв при испарении грунтовых вод, уровень которых поднялся до почвенных горизонтов. Среди засоленных почв выделяют солончаки и солонцы. Солончаки имеются в Казахстане и Средней Азии, по берегам соленых рек. Засоление почв приводит к падению урожайности селъхозкультур. Дождевые черви даже при невысокой степени засоления почвы длительный срок выдержать не могут.

Растения, обитающие на засоленных почвах, называются галофитами. Некоторые из них выделяют излишки солей через листья или накапливают их в своем организме. Вот почему их иногда используют для получения соды и поташа.

III. Абиотические факторы водной среды

Вода занимает преобладающую часть биосферы Земли (71 % общей площади земной поверхности).

Важнейшими абиотическими факторами водной среды являются следующие:

1. Плотность и вязкость.

Плотность воды в 800 раз, а вязкость — примерно в 55 раз больше, чем воздуха.

2. Теплоемкость.

Вода обладает высокой теплоемкостью, поэтому океан является главным приемником и аккумулятором солнечной энергии.

3. Подвижность.

Постоянное перемещение водных масс способствует поддержанию относительной гомогенности физических и химических свойств.

4. Температурная стратификация.

По глубине водного объекта наблюдается изменение температуры воды.

5. Периодические (годовые, суточные, сезонные) изменения температуры.

Самой низкой температурой воды считают -20С, самой высокой + 35-370С. Динамика колебаний температуры воды меньше, чем воздуха.

6. Прозрачность воды.

Определяет световой режим под поверхностью воды. От прозрачности (и обратной ей характеристики- мутности) зависит фотосинтез зеленых бактерий, фитопланктона, высших растений, а следовательно, и накопление органического вещества.

Мутность и прозрачность зависят от содержания взвешенных в воде веществ, в том числе и поступающих в водные объекты вместе с промышленными сбросами. В связи с этим прозрачность и содержание взвешенных веществ — важнейшие характеристики природных и сточных вод, подлежащие контролю на промышленном предприятии.

7. Соленость воды.

Содержание в воде карбонатов, сульфатов, хлоридов имеет большое значение для живых организмов. В пресных водах солей мало, причем преобладают карбонаты. Воды океана содержат в среднем 35 г/л солей, Черного моря-19 г/л, Каспийского — около 14 г/л. Здесь преобладают хлориды и сульфаты. В морской воде растворены практически все элементы периодической системы.

8. Растворенный кислород и диоксид углерода.

Перерасход кислорода на дыхание живых организмов и на окисление поступающих в воду с промышленными сбросами органических и минеральных веществ ведет к обеднению живого населения вплоть до невозможности обитания в такой воде аэробных организмов.

9. Концентрация водородных ионов (pH).

Все гидробионты приспособились к определенному уровню pH: одни предпочитают кислую среду, другие — щелочную, третьи — нейтральную. Изменение этих характеристик может привести к гибели гидробионтов.

10. Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

IV. К абиотическим факторам среды обитания живых организмов относятся также факторы рельефа (топография). Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор — экспозиция склона. В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие. Если уклон превышает 35Ь, почва и растительность обычно не образуются, а создаются осыпи из рыхлого материала.

V. Среди абиотических факторов особого внимания заслуживает огонь или пожар. В настоящее время экологи пришли к однозначному мнению, что пожар надо рассматривать как один из естественных абиотических факторов наряду с климатическими, эдафическими и другими факторами. Пожары как экологический фактор бывают различных типов и оставляют после себя различные последствия. Верховые или дикие пожары, то есть очень интенсивные и не поддающиеся сдерживанию, разрушают всю растительность и всю органику почвы, последствия же низовых пожаров совершенно иные.

Верховые пожары оказывают лимитирующее действие на большинство организмов — биотическому сообществу приходится начинать все сначала, с того немногого, что осталось, и должно пройти много лет, пока участок снова станет продуктивным. Низовые пожары, напротив, обладают избирательным действием: для одних организмов они оказываются более лимитирующим, для других — менее лимитирующим фактором и таким образом способствуют развитию организмов с высокой толерантностью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая умершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений.Растения выработали специальные адаптации к пожару, так же, как они сделали по отношению к другим абиотическим факторам. В частности, почки злаков и сосен скрыты от огня в глубине пучков листьев или хвоинок. В периодически выгорающих местообитаниях эти виды растений получают преимущества, так как огонь способствует их сохранению, избирательно содействуя их процветанию.

Адаптации к засушливым условиям у растений и животных.

Вода является необходимым условием существования всех живых организмов на Земле. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций. Особая роль воды для наземных организмов (особенно растений) заключается в необходимости постоянного пополнения ее из-за потерь при испарении. Поэтому вся эволюция наземных организмов шла в направлении приспособления к активному добыванию и экономному использованию влаги.

В процессе эволюции у растений и животных выработался многочисленные сложные приспособления, позволяющие поддерживать водный баланс и обеспечивать экономное расходование воды. Эти приспособления-адаптации группируются в анатомо-морфологические, физиологические и поведенческие.

Ксерофиты – растения сухого и жаркого климата и местообитаний – пустынь, степей, саванн, в лесной зоне – растения сухих сосняков и широколиственных лесов на крутых южных склонах. Они не выносят переувлажнения, но хорошо приспособились к длительным засухам. Для них характерны два способа преодоления засухи: активное регулирование водного баланса и способность выносить сильное иссушение тканей.

Для ксерофитов большое значение имеют разнообразные структурные приспособления к условиям недостатка влаги.

Корневые системы обычно сильно развиты, что помогает растениям увеличить поглощение почвенной влаги. По общей массе корневые системы ксерофитов нередко превышают надземные части, иногда весьма значительно. Так, у многих травянистых и кустарниковых видов среднеазиатских пустынь подземная масса больше надземной в 9-10 раз, а у кcерофитов памирских высокогорных холодных пустынь — в300-400 раз. Корневые системы ксерофитов часто бывают экстенсивного типа, то есть растения имеют длинные корни, распространяющиеся в большом объеме почвы, но сравнительно мало разветвленные. Проникновение таких корней на большую глубину позволяет ксерофитам использовать влагу глубоких почвенных горизонтов, а в отдельных случаях — и грунтовых вод. У других видов корневые системы интенсивного типа: они охватывают относительно небольшой объем почвы, но благодаря очень густому ветвлению максимально используют почвенную влагу. Корни ряда ксерофильных видов имеют специальные приспособления для запасания влаги. Надземные органы ксерофитов также отличаются своеобразными (так называемыми ксероморфными чертами), которые носят отпечаток трудных условий водоснабжения. У них сильно развита водопроводящая система, что хорошо заметно по густоте сети жилок в листьях, подводящих воду к тканям. Эта черта облегчает ксерофитам пополнение запасов влаги, расходуемой на транспирацию.

Разнообразные структурные приспособления защитного характера, направленные на уменьшение расхода воды, в основном сводятся к следующему:

1. Общее сокращение транспирирующей поверхности. Многие ксерофиты имеют мелкие, узкие, сильно редуцированные листовые пластинки. В особо засушливых пустынных местообитаниях листья некоторых древесных и кустарниковых пород редуцированы до едва заметных чешуек. У таких видов фотосинтез осуществляют зеленые ветви.

2. Уменьшение листовой поверхности в наиболее жаркие и сухие периоды вегетационного сезона. Для многих кустарников среднеазиатских, североафриканских и других пустынь, а так же для некоторых видов сухих субтропиков средиземноморья характерен сезонный деформизм листьев: ранней весной при еще благоприятном водном режиме образуются относительно крупные листья, которые летом, при наступлении жары и сухости, сменяются мелкими листьями более ксероморфного строения с меньшей интенсивностью транспирации.

3. Защита листьев от больших потерь влаги на транспирацию. Она достигается благодаря развитию мощных покровных тканей — толстостенного, иногда многослойного эпидермиса, часто несущего различные выросты и волоски, которые образуют густое “войлочное” опушение поверхности листа. У других видов поверхность покрыта водонепроницаемым слоем толстой кутикулы или воскового налета. Развитие защитных покровов на листьях причина того, что степной травостой имеет тусклые, седоватые оттенки, резко отличающиеся от яркой зелени лугов.

Устьица у ксерофитов обычно защищены от чрезмерной потери влаги, например, расположены в специальных углублениях в ткани листа, иногда снабженных волосками и прочими дополнительными защитными устройствами. У ковылей и других степных злаков существует интересный механизм защиты устьиц в самые жаркие и сухие часы дня: при больших потерях воды крупные тонкостенные водоносные клетки эпидермиса теряют тургор, и лист свертывается в трубку; так устьица оказываются изолированными от окружающего сухого воздуха внутри замкнутой полости, где благодаря транспирации создается повышенная влажность. Во влажную погоду клетки эпидермиса восстанавливают тургор, и листовая пластинка вновь развертывается.

4. Усиленное развитие механической ткани.

Клетки тканей листьев у ксерофитов отличаются мелкими размерами и весьма плотной упаковкой, то есть малым развитием межклетников, благодаря чему сильно сокращается внутренняя испаряющая поверхность листа. Поскольку ксерофиты обычно обитают на открытых, хорошо освещенных местообитаниях, многие черты ксероморфной структуры листа — это одновременно и черты световой структуры. Так у многих видов листья имеют мощную иногда многорядную палисадную паренхиму, часто расположенную с обеих сторон.

Виды с наиболее выраженными перечисленными свойствами представлены склерофитами (от греч. «склеро» – твердый, жесткий; саксаул, чертополох, полыни, ковыли, молочаи и др.). Устьиц много, но они при недостатке воды закрываются. Растения могут полностью терять все листья и до 15% воды. В клетках склерофитов преобладает связанная вода.

Другая большая группа ксерофитов – суккуленты (от лат. «суккулентус» — сочный, жирный), растут в жарком сухом климате там, где проходят кратковременные, но сильные обильные ливни. Во время дождей накапливают в листьях (алоэ, агавы, молодило) или стеблях (молочаи, кактус опунция) большие запасы воды, а потом медленно ее расходуют. Устьиц мало, они мелкие, в углублениях, и открываются только ночью.

Наряду с морфологическими особенностями у растений, приуроченных к местам с разными условиями увлажненности, выработались и физиологические.

Ксерофиты обладают рядом разнообразных физиологических адаптаций, позволяющих им успешно выдерживать недостаток влаги.

У ксерофитов обычно повышено осмотическое давление клеточного сока, позволяющее всасывать воду даже при больших водоотнимающих силах почвы, то есть использовать не только легкодоступную, но и труднодоступную почвенную влагу. Оно измеряется тысячами кПа, а у некоторых пустынных кустарников зарегистрированы цифры, достигающие 10000-30000 кПа.

С давних пор пристальное внимание привлекала проблема расхода воды ксерофитами на транспирацию. Казалось бы, многочисленные анатомические приспособления, достаточно надежно защищающие наземные части ксерофитов от сильного испарения, должны способствовать значительному снижению транспирации. Однако выяснилось, что в действительности это не так. При достаточном водоснабжении большинство ксерофитов имеют довольно высокую транспирацию, но при наступлении засушливых условий, они сильно сокращают ее. При этом играет роль и закрывание устьиц, и сильное обезвоживание листа при начинающемся подвядании. Несомненно, анатомо-морфологические приспособления имеют определенное значение, но основную роль в засухоустойчивости ксерофитов в настоящее время отводят физиологическим механизмам.

К числу этих механизмов принадлежит высокая водоудерживающая способность тканей и клеток, обусловленная рядом физиологических и биохимических особенностей.

Большое значение для выживания ксерофитов при резком недостатке влаги имеет их способность переносить глубокое обезвоживание тканей без потери жизнеспособности и способности восстановления нормального содержания воды в растении при возобновлении благоприятных условий. Ксерофиты способны потерять до 75 % всего водного запаса и, тем не менее, остаться живыми. Ярким примером в этом отношении служат пустынные растения, которые летом высыхают до состояния, близкого к воздушно-сухому, и впадают в анабиоз, но после дождей возобновляют рост и развитие.

Еще одна система адаптаций, обеспечивающих выживание ксерофитов в аридных условиях, — выработка сезонных ритмов, дающих возможность растениям использовать для вегетации наиболее благоприятные периоды года и резко сократить жизнедеятельность во время засухи. Так, в областях со средиземноморским климатом с резко выраженным летним сухим периодом многие ксерофильные виды имеют “двухтактный” ритм сезонного развития: весенняя вегетация сменяется летним покоем, во время которого растения сбрасывают листву и снижают интенсивность физиологических процессов; в период осенних дождей вегетация возобновляется, и затем уже следует зимний покой. Сходное явление наблюдается и у растений сухих степей в середине и конце лета: потеря части листовой поверхности, приостановка развития, сильное обезвоживание тканей и т.д. Такое состояние, получившее название полупокоя, длится вплоть до осенних дождей, после которых у степных ксерофитов начинают отрастать листья.

Физиологические адаптации суккулентов столь своеобразны, что их необходимо рассмотреть отдельно.

Основной способ преодоления засушливых условий у суккулентов — накопление больших запасов воды в тканях и крайне экономное ее расходование. В условиях жаркого и сухого климата весь водный запас мог бы быть быстро растрачен, но растения имеют защитные приспособления, направленные к сокращению транспирации. Одно из них — своеобразная форма надземных частей суккулентов. В дополнение к этому у многих суккулентов поверхность защищена восковым налетом опушением, хотя есть и суккуленты с тонким не защищенным эпидермисом. Устьица очень немногочисленны, часто погружены в ткань листа или стебля. Днем устьица обычно закрыты, и потеря воды идет в основном через покровные ткани.

Транспирация у суккулентов чрезвычайно мала. Ее трудно уловить за короткий период и приходится определять расход воды не за час, а за сутки или за неделю. Водоудерживающая способность тканей суккулентов значительно выше, чем у других растений экологических групп, благодаря содержанию в клетках гидрофильных веществ. Поэтому и без доступа влаги суккуленты расходуют водный запас очень медленно и долго сохраняют жизнеспособность даже в гербарии.

Ограничения, обусловленные особенностями водного режима суккулентов, создают и другие трудности для жизни этих растений в аридных условиях. Слабая транспирация сводит к минимуму возможность терморегуляции, с чем связано сильное нагревание массивных надземных органов суккулентов. Затруднения создаются и для фотосинтеза, поскольку днем устьица обычно закрыты, а открываются ночью, следовательно, доступ углекислоты и света не совпадают во времени. Поэтому у суккулентов выработался особый путь фотосинтеза, при котором в качестве источника углекислоты, частично используются продукты дыхания. Иными словами, в крайних условиях растения частично используют принцип замкнутой системы с реутилизацией отходов метаболизма.

В силу всех этих ограничений интенсивность фотосинтеза суккулентов невелика, рост и накопление массы идут очень медленно, вследствие чего они не отличаются высокой биологической продуктивностью и не образуют сомкнутых растительных сообществ.

Среди животных тоже можно выделить ксерофилы – сухолюбы и термофилы одновременно, не переносят высокую влажность воздуха. У них хорошо развиты механизмы водообмена и функции удержания воды в теле. У пресмыкающихся отсутствуют кожные железы, из тела выделяется мочевая кислота, а не мочевина (для растворения мочевины нужно больше воды). У черепахи вода запасается в мочевом пузыре, грызуны воду получают с пищей. Верблюд, тушканчики, курдючные овцы воду получает в результате окисления жиров, при котором образуется метаболическая вода.

В таблице 2 приведены примеры приспособления живых существ к жизни в пустыне.

Таблица 2

Адаптации к засушливым условиям у растений и животных (по Н. Грину и др., 1993)

Адаптации

Примеры организмов

Уменьшение потери воды
Листья превращены в иглы или колючки Cactасеае (кактусы), Euphorbiасеае (молочаи), хвойные деревья
Погруженные устьица Рinus, Ammophila
Листья свернуты в цилиндр Ammophila, Ledum palustrum, Rhododendron sichotensis
Толстый стебель с большим от­ношением объема к поверхности

Сасtасеае, Euphorbiасеае (суккуленты) Опушенные листья Многие альпийские растения Сбрасывание листьев при засухе Fouguieria splendens толстянковые Устьица открыты ночью и закры­ты днем Crassulaceae (толстянковые)Эффективная фиксация СО2 ночью при не полностью открытых устьицах С-4-растения, например, Zea mays Выделение азота в виде мочевой кислоты Насекомые, птицы и некоторые рептилии Удлиненная петля Генле в почках Пустынные млекопитающие, например, верблюд, пустынная крысаТкани выносливы к высоким температурам из-за уменьшения потоотделения или транспирации Многие пустынные растения, верблюд Животные прячутся в норах

Многие мелкие пустынные млекопитающие, например, пустынная крыса  Дыхательные отверстия прикрыты клапанами Многие насекомые Увеличение поглощения воды  Обширная поверхностная корневая система и глубоко проникающие корни Некоторые Сасtасеае, например, Opuntia и Euphorbiaceae; Дуб монгольский, Леспедеца Длинные корни Многие альпийские растения, например, эдельвейс (Leontupodium alpinum)Прорытие ходов к воде ТермитыЗапасание воды  В слизистых клетках и в клеточных стенках Сасtасеае и Euphorbiaceae Вспециализированном мочевом пузыре Пустыннаялягушка В виде жира (вода – продукт окисления жира)Пустынная крыса Физиологическая устойчивость к потере воды  При видимом обезвоживании сохраняется жизнеспособностьНекоторые эпифитные папоротники и плауны, многие мохообразные и лишайники, Сагех physoides Потеря значительной части массы тела и быстрое ее восстановление при наличии доступной воды Lumbricus terrestris (теряет до 70% массы), верблюд (теряет до 30%)Уклонение от проблемы  Переживают неблагоприятный период в виде семян Эшшольция калифорнийская, Марьянник розовый Переживают неблагоприятный период в виде луковиц и клубней Некоторые лилии, Хохлатки Распространение семян в расчете на то, что некоторые из них попадут в благоприятные условия Различные растенияПоведенческие реакции избегания Почвенные организмы, например, дождевые черви, клещи Летняя спячка в слизистом коконе Дождевые черви, двоякодышащие рыбы.

Экологические зоны Мирового океана.

Экологические области Мирового океана, экологические зоны Мирового океана, — области (зоны) океанов, где систематический состав и распределение морфологических и физиологических особенностей морских организмов тесно связаны с окружающими их условиями среды: пищевыми ресурсами, температурным, солевым, световым и газовым режимом водных масс, другими их физическими и химическими свойствами, физическими и химическими свойствами морских грунтов и, наконец, с другими организмами, населяющими океаны и образующими вместе с ними биогеоценотические системы. Все перечисленные свойства испытывают значительные изменения от поверхностных слоев в глубины, от побережий к центральным частям океана. В соответствии с указанными абиотическими и биотическими факторами среды в океане выделяются экологические зоны, а организмы делятся на экологические группы.

Все живые организмы океана в целом делятся на бентос, планктон и нектон. Первая группа включает организмы, живущие на дне в прикреплённом или свободноподвижном состоянии. Это в большинстве крупные организмы, с одной стороны, многоклеточные водоросли (фитобентос), а с другой — различные животные: моллюски, черви, ракообразные, иглокожие, губки, кишечнополостные и др. (зообентос). Планктон состоит в большинстве из мелких растительных (фитопланктон) и животных (зоопланктон) организмов, находящихся во взвешенном состоянии в воде и носящихся вместе с нею, органы движения у них слабые. Нектон — это совокупность животных организмов, обычно крупных размеров, обладающих сильными органами передвижения, — морские млекопитающие, рыбы, головоногие моллюски-кальмары. Кроме этих трёх экологических групп, можно выделить плейстон и гипонейстон.

Плейстон — совокупность организмов, существующих в самой поверхностной плёнке воды, часть их тела погружена в воду, а часть выставляется над поверхностью воды и выполняет роль паруса. Гипонейстон — организмы поверхности водного слоя в несколько сантиметров, Каждой жизненной форме свойственны определённая форма тела и некоторые придаточные образования. Нектонным организмам свойственна торпедообразная форма тела, планктонным — приспособления к парению (шипы и отростки, а также газовые пузыри или капли жира, уменьшающие вес тела), защитные образования в виде панцирей, скелетов, раковин и т. п.

Важнейшим фактором в распределении морских организмов является распределение пищевых ресурсов как поступающих с побережий, так и создаваемых в самом водоёме. По способу питания морские организмы могут быть распределены на хищников, растительноядных, фильтраторов — сестонофагов (сестон — это взвешенные в воде мелкие организмы, органический детрит и минеральная взвесь), детритофагов и грунтоедов.


Как и во всяком другом водоёме, живые организмы океана могут быть разделены на продуцентов, консументов (потребителей) и редуцентов (возвращающих обратно). Главная масса нового органического вещества создаётся продуцентами-фотосинтетиками, способными существовать только в верхней зоне, достаточно хорошо освещаемой солнечными лучами и не простирающейся глубже 200 м, однако главная масса растений приурочена к верхнему слою воды в несколько десятков метров. У побережий — это многоклеточные водоросли: макрофиты (зелёные, бурые и красные), растущие в прикреплённом ко дну состоянии (фукусы, ламинарии, алярии, саргассы, филлофора, ульва и мн. др.), и некоторые цветковые растения (зостера филлоспадикс и др.). Другая масса продуцентов (одноклеточные планктонные водоросли, главным образом диатомовые и перидиниевые) во множестве населяет поверхностные слои моря. Консументы существуют за счёт готовых органических веществ, созданных продуцентами. Это вся масса животных, населяющих моря и океаны. Редуценты — это мир микроорганизмов, разлагающих органические соединения до самых простых форм и вновь создающих из этих последних более сложные соединения, необходимые растительным организмам для их жизнедеятельности. В какой-то степени микроорганизмы являются также хемосинтетиками — они продуцируют органическое вещество, переводя одни химические соединения в другие. Так совершаются циклические процессы органических веществ и жизни в морских водоёмах.

По физическим и химическим особенностям водной массы океана и по рельефу дна его подразделяют на несколько вертикальных зон, которым свойственны определённый состав и экологические особенности растительного и животного населения (см. схему). В океане и входящих в него морях различают прежде всего две экологические области: толщу воды – пелагиаль  и дно – бенталь. В зависимости от глубины бенталь делится на сублиторальную зону – область плавного понижения суши до глубины примерно 200 м, батиальную – область крутого склона и абиссальную зону  – область океанического ложа со средней глубиной 3–6 км. Еще более глубокие области бентали, соответствующие впадинам океанического ложа, называют ультраабиссалью. Кромка берега, заливаемая во время приливов, называется литоралью. Выше уровня приливов часть берега, увлажняемая брызгами прибоя, получила название супралиторали.

Бентос обитает в самом верхнем горизонте — в литорали. Морская флора и фауна обильно заселяют литоральную зону и вырабатывают в связи с этим ряд экологических приспособлений к переживанию периодической осушки, Некоторые животные плотно закрывают свои домики и раковины, другие зарываются в грунт, третьи забиваются под камни и водоросли или плотно сжимаются в комок и выделяют на поверхности слизь, препятствующую высыханию. Некоторые организмы выбираются ещё выше самой верхней границы прилива и довольствуются заплесками волн, орошающими их морской водой. Это супралиторальная зона. В состав литоральной фауны входят почти все большие группы животных: губки, гидроиды, черви, мшанки, моллюски, ракообразные, иглокожие и даже рыбы, в супралитораль выбираются некоторые водоросли и ракообразные. Ниже самой низкой границы отлива (до глубины около 200 м) простирается сублитораль, или материковый шельф. По обилию жизни литораль и сублитораль стоят на первом месте, особенно в умеренной зоне — огромные заросли макрофитов (фукусы и ламинарии), скопления моллюсков, червей, ракообразных и иглокожих служат обильным кормом рыбам. Плотность жизни на литорали и сублиторали достигает нескольких килограммов, а иногда десятков килограммов, главным образом за счёт водорослей, моллюсков и червей. Сублитораль — основная область использования человеком сырьевых ресурсов моря — водорослей, беспозвоночных и рыб. Ниже сублиторали располагается батиаль, или материковый склон, переходящий на глубине 2500-3000 м (по другим данным 2000 м) в ложе океана, или абиссаль, в свою очередь, подразделяющуюся на подзоны верхнеабиссальную (до 3500 м) и нижнеабиссальную (до 6000 м). В пределах батиали плотность жизни резко падает до десятков грамм и нескольких грамм на 1 м3, а в абиссали до нескольких сотен и даже десятков мг на 1 л3. Наибольшая часть ложа океана занята глубинами 4000—6000 м. Глубоководные впадины с их наибольшими глубинами до 11000 м занимают всего около 1% площади дна, это ультраабиссальная зона. От побережий до наибольших глубин океана уменьшается не только плотность жизни, но и её разнообразие: в поверхностной зоне океана обитают многие десятки тысяч видов растений и животных, а для ультраабиссали известно всего несколько десятков видов животных. 

Пелагиаль также делят на вертикальные зоны, соответствующие по глубине зонам бентали: эпипелагиаль, батипелагиаль, абиссопелагиаль. Нижняя граница эпипелагиали (не более 200 м) определяется проникновением солнечного света в количестве, достаточном для фотосинтеза. Организмы, обитающие в толще воды, или пелагиали, относятся к пелагосу.Подобно донной фауне, плотность планктона также испытывает количественные изменения от побережий в центр, части океанов и от поверхности в глубины. У побережий плотность планктона определяется сотнями мг на 1 л3, иногда несколькими граммами, а в средних частях океанов несколькими десятками граммами. В глубинах океана она падает до нескольких мг или долей мг в 1 м3. Растительный и животный мир океана с увеличением глубины претерпевает закономерные изменения. Растения обитают только в верхней 200-метровой толще воды. Прибрежные макрофиты в своём приспособлении к характеру освещения испытывают смену состава: самые верхние горизонты заняты преимущественно зелёными водорослями, затем идут бурые и глубже всего проникают красные водоросли. Это связано с тем, что в воде быстрее всего затухают красные лучи спектра, а глубже всего идут синие и фиолетовые лучи. Растения окрашиваются в дополнительный цвет, что обеспечивает наилучшие условия фотосинтеза. Такая же смена окраски наблюдается и у донных животных: на литорали и сублиторали они преимущественно серых и бурых оттенков, а с глубиной всё больше проявляется красная окраска, но целесообразность этой смены цвета в данном случае другая: окраска в дополнительный цвет делает их невидимыми и защищает от врагов. У пелагических организмов и в эпипелагиали и глубже наблюдается потеря пигментации, некоторые животные, особенно кишечнополостные, становятся прозрачными, как стекло. В самом поверхностном слое моря прозрачность способствует прохождению через их тело солнечных лучей без вредного воздействия на их органы и ткани (особенно в тропиках). Кроме того, прозрачность тела делает их невидимыми и спасает от врагов. Наряду с этим с глубиной некоторые планктонные организмы, особенно ракообразные, приобретают красную окраску, что при слабом освещении делает их невидимыми. Не подчиняются этому правилу глубоководные рыбы, в большинстве они окрашены в чёрный цвет, хотя и среди них имеются депигментированные формы.

Морским животным свойственно свечение, особенно сильно оно выражено у глубоководных животных и в наибольшей степени у рыб и головоногих моллюсков. Массовое свечение наблюдается у некоторых бактерий и планктонных организмов на всех горизонтах моря.

Типы роста популяции. Динамика численности популяции.

Если при незначительной эмиграции и иммиграции рождаемость превышает смертность, то популяция будет расти. Рост популяции является непрерывным процессом, если в ней существуют все возрастные группы. Скорость роста популяции при отсутствии каких-либо экологических ограничений описывает дифференциальное уравнение:

dN/dt = rN, (1)

где N — численность особей в популяции; t — время; rконстанта скорости естественного прироста.

J -образная модель роста популяции. Если r> 0, то со временем численность популяции становится больше. Рост происходит сначала медленно, а затем стремительно увеличивается по экспоненциальному закону, т. е. кривая роста популяции принимает J-образный вид (рис.1, а). Такая модель основывается на допущении, что рост популяции не зависит от ее плотности. Считают, что почти любой вид теоретически способен увеличить свою численность до заселения всей Земли при достатке пищи, воды, пространства, постоянстве условий среды и отсутствии хищников. Эта идея была выдвинута еще на рубеже XVIII и XIX вв. английским экономистом Томасом Р. Мальтусом, основоположником теории мальтузианства.

При неограниченных ресурсах такие быстро размножающиеся виды как бактерии, насекомые, мыши и некоторые рыбы, могут сделать это за короткий отрезок времени. Например, при отсутствии ограничений один вид бактерий полностью заселил бы нашу планету за 30 дней. Почему же этого не происходит? Потому что природные условия не столь идеальны, а ресурсы ограничены. Такие факторы, как наличие хищников, внутри- и межвидовая конкуренции, недостаток пищи, болезни, неблагоприятные климатические условия, отсутствие подходящих местообитаний, как правило, останавливают рост популяции ниже уровня максимальной рождаемости. Максимальный размер популяции одного вида, который природная экосистема способна поддерживать в определенных экологических условиях неопределенно долго, называется поддерживающей емкостью экосистемы для данного вида или просто емкостью экосистемы.

S-образная модель роста популяции. Иное развитие получает ситуация при ограниченности пищевых ресурсов. Смертность начинает расти, когда численность популяции достигает или временно превышает емкость экосистемы .Первоначальный экспоненциальный рост в исходных благоприятных условиях со временем продолжаться не может и постепенно замедляется. Плотность популяции регулирует истощение пищевых ресурсов, накопление токсикантов и поэтому влияет на рост численности. С увеличением плотности скорость роста популяции постепенно снижается до нуля, и кривая выходит на некоторый стабильный уровень (график образует плато). Кривая такого роста (рис. 1, б) имеет S-образную форму, и поэтому соответствующая модель развития событий называется S-образной. Она характерна, например, для дрожжей, фактором, ограничивающим их рост, является накопление спирта, а также для водорослей, самозатеняющих друг друга. В обоих случаях численность популяции не достигает уровня, на котором начинает сказываться нехватка элементов питания (биогенов).

На рост численности, в которой значительную (возможно, даже главную) роль играет пространство, также влияет перенаселенность. Лабораторные опыты с крысами показали, что по достижении определенной плотности популяции плодовитость животных резко снижается даже при избытке пищи. Возникают гормональные сдвиги, влияющие на половое поведение; чаще встречается бесплодие, поедание детенышей родителями и т. п. Резко ослабевает родительская забота о потомстве, детеныши раньше покидают гнездо, в результате чего снижается вероятность их выживания. Усиливается агрессивность животных. Подобные явления встречаются также в популяциях ряда млекопитающих, причем не только в лабораторных, но и природных условиях.

Скорость роста численности в S-образной модели определяет дифференциальное уравнение

dN/dt = rN[(KN)/K], (2)

где К — поддерживающая емкость среды, т. е. максимальный размер популяции, которая может существовать в данных условиях, удовлетворяя свои потребности неопределенно долго. Если N > К, скорость роста отрицательна. Если N < К ,тоскорость роста положительна и величина популяции N стремится к К, т. е.приводится в соответствие с поддерживающей емкостью среды. Если N = К, тоскорость роста популяции равна нулю. При нулевом росте популяция стабильна, т. е. ее размеры не меняются, хотя отдельные организмы по-прежнему растут, размножаются и отмирают. Происходящее размножение уравновешивается смертностью.

В специализированной литературе J- и S-образные модели роста численности часто называют соответственно экспоненциальной и логистической.

Поддерживающая емкость играет решающую роль не только при росте популяции по S-образной, но также и по J-образной модели, ибо в некоторый момент времени все же наступает исчерпание какого-либо ресурса среды, т. е. он (или даже несколько одновременно) становится лимитирующим. Развитие дальнейших событий показано на рис. 2, а, б. После бума с внезапным выходом J-образной кривой за пределы уровня К происходит крах популяции, т. е. катастрофа, приводящая к резкому снижению численности. Причиной краха часто бывает внезапное резкое изменение условий окружающей среды (экологических факторов), понижающее поддерживающую емкость среды. Тогда огромное число особей, не способных эмигрировать, погибает.

При наиболее благоприятном для популяции стечении обстоятельств новый уровень численности соответствует поддерживающей емкости среды или, иначе говоря, кривая роста превращается из J-образной в S-образную

Однако исчерпание пищевых ресурсов может привести также к появлению и других трудностей для популяции, например к развитию болезней. Тогда численность снижается до уровня значительно более низкого, чем поддерживающая емкость среды (рис. 2, а), а в пределе популяция может даже быть обречена на вымирание.

Описанные модели роста популяции и дифференциальные уравнения предполагают, что все организмы сходны между собой, имеют равную вероятность погибнуть и равную способность к размножению, так что скорость роста популяции в экспоненциальной фазе зависит только от ее численности и не ограничена условиями среды, которые остаются постоянными. Они точно описывают процессы роста и взаимодействия особей в большинстве искусственных и некоторых естественных популяциях. Идеальность всех экологических факторов в исходных условиях предопределила то, что рассматриваемые модели называют идеальными.

Для природных популяций принятые допущения чаще всего неверны. В естественных условиях J- и S-образные модели роста популяции преимущественно можно наблюдать в случаях, когда тех или иных животных вселяют или они сами распространяются в новые для них районы. Тем не менее, теоретические модели роста позволяют лучше понять процессы, происходящие в естественных условиях. Большинство принципов, используемых для моделирования популяций животных, применимо также и для моделирования популяций растений.

Следует отметить, что при любой модели (как J-, так и S-образной) вначале характерна фаза экспоненциального роста численности популяции (рис. 1,2, б). Поэтому при сочетании благоприятных (оптимальных) значений всех факторов среды возникает популяционный взрыв, т. е. особо быстрый рост популяции того или иного вида.

Миграция или расселение, так же как и внезапное снижение скорости размножения, могут способствовать уменьшению численности популяции. Расселение может быть связано с определенной стадией жизненного цикла, например с образованием семян.

Применительно к условиям реальной природной среды принято использовать понятия биотический потенциал— совокупность всех экологических факторов, способствующих увеличению численности популяции, или видовая способность к размножению при отсутствии ограничений со стороны среды, а также сопротивление среды— сочетание факторов, ограничивающих рост (лимитирующих факторов).

Любые изменения популяции есть результат нарушения равновесия между ее биотическим потенциалом и сопротивлением окружающей среды.

По достижении заключительной фазы роста размеры популяции продолжают колебаться от поколения к поколению вокруг некоторой более или менее постоянной величины. При этом численность одних видов изменяется нерегулярно с большой амплитудой колебаний (насекомые-вредители, сорняки), колебания численности других (например, мелких млекопитающих) имеют относительно постоянный период, а в популяциях третьих видов численность колеблется от года к году незначительно (долгоживущие крупные позвоночные и древесные растения).

В природе в основном встречаются три вида кривых изменения численности популяции: относительно стабильный, скачкообразный и циклический .

Виды, у которых численность из года в год находится на уровне поддерживающей емкости среды, имеют достаточно стабильные популяции . Такое постоянство характерно для многих видов дикой природы и встречается, например, в нетронутых тропических влажных лесах, где среднегодовое количество осадков и температура изменяются день ото дня и из года в год крайне мало.

У других видов колебания численности популяций носят правильный циклический характер.Хорошо знакомы примеры сезонных колебаний численности. Тучи комаров; поля, заросшие цветами; леса, полные птиц, — все это характерно для теплого времени года в средней полосе и сходит практически на нет зимой. Широко известен пример циклических колебаний численности леммингов (северных травоядных мышевидных грызунов) в Северной Америке и Скандинавии. Раз в четыре года плотность их популяций становится столь высокой, что они начинают мигрировать со своих перенаселенных местообитаний; при этом массово гибнут в фиордах и тонут в реках, что до настоящего времени не имеет достаточного объяснения. Еще с глубокой древности известны циклические нашествия странствующей африканской саранчи на Евразию.

Ряд видов, таких, как енот, в основном имеют достаточно стабильные популяции, однако время от времени их численность резко возрастает (подскакивает) до наивысшего значения, а затем резко падает до некоторого низкого, но относительно стабильного уровня. Эти виды относят к популяциям со скачкообразным ростом численности. Внезапное увеличение численности происходит при временном повышении емкости среды для данной популяции и может быть связано с улучшением климатических условий (факторов) и питания или резким уменьшением численности хищников (включая охотников). После превышения новой, более высокой емкости среды в популяции возрастает смертность, и ее размеры резко сокращаются.

Продуктивность экосистем. Составьте схему потока энергии в экосистеме. Правило 1%.

Итак, жизнь в экосистеме поддерживается благодаря непрекращающемуся прохождению через живое вещество энергии, передаваемой от одного трофического уровня к другому; при этом происходит постоянное превращение энергии из одних форм в другие. Кроме того, при превращениях энергии часть ее теряется в виде тепла.

Тогда в стает вопрос: в каких количественных соотношениях, пропорциях должны находиться между собой члены сообщества разных трофических уровней в экосистеме, чтобы обеспечивать свою потребность в энергии?

Весь запас энергии сосредоточен в массе органического вещества — биомассе, поэтому интенсивность образования и разрушения органического вещества на каждом из уровней определяется прохождением энергии через экосистему (биомассу всегда можно выразить в единицах энергии).

Скорость образования органического вещества называют продуктивностью.

Различают первичную и вторичную продуктивность. Энергия поступает в живую составляющую экосистемы через продуценты.

Скорость накопления энергии продуцентами в форме органического вещества, которое может быть использовано в пищу, называется первичной продукцией.

Этим показателем определяется общий поток энергии через живую составляющую экосистемы, а значит, и количество (биомасса) живых организмов, которые могут существовать за ее счет в экосистеме. В первичной продуктивности различают валовую и чистую продуктивность.

Валовая первичная продуктивность — это скорость, с которой растения накапливают химическую энергию при фотосинтезе. Часть ее — около 20 % — они тратят на дыхание — поддержание собственной жизнедеятельности, которая затем в виде теплоты выделяется в окружающую среду и теряется для экосистемы.

Скорость накопления органического вещества продуцентами за вычетом расхода на дыхание называется чистой первичной продуктивностью. Это энергия, которую могут использовать организмы следующих трофических уровней.

Поступившая на уровень консументов любого уровня энергия распределяется следующим образом.

Скорость накопления органического вещества на уровнях консументов называется вторичной продуктивностью. Это энергия, которую могут использовать консументы следующего трофического уровня.

Из рассмотренного механизма передачи энергии по цепи живого вещества в экосистеме видно, что в каждом звене пищевой цепи часть энергии — около 90 % — теряется. Поэтому длина пищевой цепи ограничивается размерами этих потерь и, как правило, составляет 3 — 4 уровня. При этом с повышением трофического уровня его биомасса снижается, так как, во- первых, если фитофаги будут потреблять больше биомассы, чем ее производят продуценты, что например, имеет место при избыточном выпасе, то популяция продуцентов в конце концов исчезнет; во — вторых, существенная доля потребляемой консументами биомассы не усваивается и возвращается в экосистему в виде экскрементов, а из той, что усваивается, лишь несколько процентов идет на создание биомассы.

Таким образом, в естественных экосистемах на высших трофических уровнях не может быть большой биомассы. Именно как нарушение этого закона следует рассматривать демографический взрыв популяции человека на планете Земля или фрагменты фантастических фильмов, когда по безжизненной каменной поверхности космического объекта бродят громадные чудовища.

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или их биомассой, или заключенной в них энергией, рассчитанных на единицу площади в единицу времени. Графически трофическую структуру сообщества представляют в виде пирамиды. Основанием пирамиды служит первый трофический уровень — уровень продуцентов, а последующие уровни образуют следующие этажи пирамиды. При этом высота всех блоков — этажей — одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

Из количественных оценок, связанных с энергией, для трофических цепей известно правило десяти процентов (закон Линдемана): с одного трофического уровня на другой в среднем переходит не более 10 % энергии. Чем больше таких ступеней, тем меньшая доля энергии достается конечному потребителю. Пирамида энергий является наилучшим графическим изображением трофической структуры экосистемы, поскольку она отражает динамику системы, то есть скорость прохождения энергии через пищевую цепь.

Участие разных групп организмов в деструкции органики имеет похожую градацию: около 90% энергии ЧПП освобождают микроорганизмы и грибы, менее 10% — беспозвоночные животные и менее 1% — позвоночные животные — конечные консументы. В соответствии с последней цифрой и сформулировано правило одного процента, согласно которому указанное соотношение является важнейшим условием стабильности биосферы. Другими словами,доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не превышает одного процента.

Имея теперь представление о трофической структуре экосистем, выясним, чем определяется реальная продуктивность экосистемы, поскольку именно этот «конечный результат» представляет для нас интерес. В любой экосистеме происходит образование биомассы и ее разрушение, причем эти процессы всецело определяются жизнью низшего трофического уровня — продуцентами. Все остальные организмы только потребляют уже созданное растениями органическое вещество и, следовательно, общая продуктивность экосистемы от них не зависит.

В зеленых тканях растений осуществляется два параллельных, но противоположных процесса — фотосинтез и дыхание. При фотосинтезе вещество создается, энергия накапливается, а при дыхании, как и при отмирании, часть накопленных веществ и энергии расходуется. Поэтому дыхание и отмирание рассматривается как некоторая мера энергии, выносимой из сообщества, в то время как увеличение биомассы есть продуктивность.

Теперь понятно, что если в экосистеме процессы накопления вещества преобладают над процессами дыхания и отмирания, то есть отношение продуцируемой массы П к расходам на дыхание и отмирание Д больше единицы (П/Д > 1), то суммарная биомасса в ней нарастает. Если же в процессе дыхания, отмирания или потребления последующими звеньями пищевой цепи расходуется больше вещества, чем создается растениями (П/Д < 1), то запасы биомассы убывают. При равенстве биомассы, продуцируемой растениями в процессе фотосинтеза и убывающей за счет дыхания, отмирания тех же растений или расходования последующими уровнями (П/Д=1), объем биомассы в ней остается примерно постоянным.

В водных экосистемах слой воды сильнее препятствует проникновению солнечных лучей, чем атмосферный воздух. Естественно, водные организмы приспособились к тому, чтобы использовать то количество света, которое реально поступает на ту или иную глубину для накопления органического вещества. Однако по мере увеличения глубины процессы фотосинтеза ослабляются и постепенно уравниваются с процессами дыхания.

Высокие скорости продуцирования биомассы наблюдаются в естественных и искусственных экосистемах там, где благоприятны абиотические факторы, и особенно при поступлении дополнительной энергии извне, что уменьшает собственные затраты системы на поддержание жизнедеятельности. Такая дополнительная энергия может поступать в разной форме: например, на возделываемом поле — в форме энергии ископаемого топлива и работы, совершаемой человеком или животным.

Оценивая продуктивность экосистемы, зависящую от соотношения П/Д, необходимо учитывать как утечки энергии, связанные со сбором урожая, загрязнением среды, неблагоприятными климатическими условиями и с другими типами стрессовых воздействий, способствующих отведению энергии от процесса продукции — увеличению Д, так и поступления энергии, которые увеличивают продуктивность П.

Таким образом, для обеспечения энергией всех особей сообщества живых организмов экосистемы необходимо определенное количественное соотношение между продуцентами, консументами разных порядков, детритофагами и редуцентами. Количественное соотношение численности живых организмов между трофическими уровнями отражает трофическую структуру сообщества, которая определяет скорость прохождения энергии и вещества через сообщество, то есть продуктивность экосистемы.

  1. Человек как биологический вид. Экологическая ниша человека. Экотипы.

Человек является биосоциальным существом и в то же самое время — представителем биологического вида — Человек разумный (Homo sapiens), принадлежащего к царству животных, типу хордовых, классу млекопитающих, подклассу плацентарных, отряду приматов, семейству гоминид. Другие семейства, входящие в отряд приматов, — это понгиды – крупные человекообразные обезьяны (орангутаны, шимпанзе, гориллы) и хилобатиды — малые человекообразные обезьяны (гиббоны).

Человек, как и все другие живые существа — часть природы и продукт природной, биологической эволюции. Антропологи проследили биологическую эволюцию Homo sapiens от высших приматов до современного человека. Питекантропы, австралопитеки, синантропы, неандертальцы, кроманьонцы составляют отдельные этапы этой эволюции, которая наглядно демонстрирует развитие человека как биологического вида, увеличение объема его головного мозга, изменение — конечностей и всей его природной конституции.

Как и всякое живое существо, человек является своеобразной метаболической системой, существующей за счет обмена веществ с окружающей средой. Он дышит, потребляет различные природные продукты, существует как биологическое тело в пределах определенных физико-химических, органических и других условий окружающей среды. Как природное, биологическое существо, человек рождается, растет, взрослеет, стареет и умирает.

Человеку, как и животному, свойственны инстинкты, жизненные (витальные) потребности. Существуют также и биологически запрограммированные протосоциальные (досоциальные) схемы поведения человека как специфического биологического вида. Биологические детерминанты (факторы, определяющие существование и развитие) определяются набором генов у человека, балансом вырабатываемых гормонов, обменом веществ и другими биологическими факторами. Все это характеризует человека как биологическое существо, определяет его биологическую природу.

Характерной чертой, отличающей человека от животного, является, прежде всего, речь, способность к которой определяется развитием мозга, а также артикуляционного аппарата. Речь в свою очередь является средством коммуникации, планирования совместных действий и, что очень важно, концептуального мышления. Второе важнейшее отличие, связанное с первым, — это наличие крупного, сложного, хорошо развитого мозга, в котором увеличено (по сравнению с животными) не только количество нейронов, но главным образом межнейронных связей, т. е. усложнена организация всего мозга и прежде всего коры его больших полушарий. Развитие мозга и руки дало возможность применять орудия труда. В свою очередь все эти изменения связаны со способностью к прямохождению и соответствующему изменению скелета и пропорций тела человека. Еще человека отличает от животных абстрактное мышление, поэтому его иногда называют животным, создающим символы. Слово для людей является не сигналом, как для животных, а понятием. Люди способны к планированию своих действий, словесной передаче опыта, к осознанию таких понятий, как совесть, вера, красота. Кроме того, человеку, в отличие от других видов животных, характерны иные темпы онтогенеза, а именно удлиненные периоды эмбриогенезаи детства, периода обучения и экономической, а также физиологической зависимости от взрослых.

Вышеуказанные отличия человека от животного характеризуют его природу; она, будучи биологической, не заключается в одной лишь природной жизнедеятельности человека. Он как бы выходит за пределы своей биологической природы и способен на такие действия, которые не приносят ему никакой пользы, ему свойственен альтруизм, он различает добро и зло, справедливость и несправедливость, способен к самопожертвованию и к постановке таких вопросов, как Кто я?, Для чего я живу?, Что я должен делать? и др. Человек — не только природное, но и общественное существо, живущее в особом мире — в обществе, которое социализирует человека. Он рождается с набором биологических черт, присущих ему как некоторому биологическому виду. Человеком же разумным становится под действием общества. Он научается языку, воспринимает общественные нормы поведения, пропитывается общественно значимыми ценностями, регулирующими общественные отношения, выполняет определенные общественные функции и играет специфически социальные роли.

Все его природные задатки и чувства, включая слух, зрение, обоняние становятся общественно — культурно ориентированными. Он оценивает мир по законам красоты, развитой в данной общественной системе, действует по законам нравственности, которые сложились в данном обществе. В нем развиваются новые, не только природные, но и социальные духовно-практические чувства. Это, прежде всего, чувства социальности, коллективности, нравственности, гражданственности, духовности.

Все вместе эти качества, как прирожденные, так и приобретенные в социуме характеризуют биологическую и социальную природу человека.

Появление человека в биосфере было предопределено около 4,0 млн лет назад, когда произошло отделение эволюционной ветви предков человека. Это, по-видимому, случилось в Африке. Человек же, подобный современному, так называемый кроманьонский человек появился в биосфере всего около 40 тыс. лет тому назад. Если представить всю историю жизни на Земле в масштабе суток, то можно сказать, что в природе человек появился всего за несколько секунд до полуночи. За этот краткий срок его биологические свойства не изменились, тогда, как его бурная социокультурная эволюция изменила лик Земли, в итоге поставив природу под угрозу уничтожения. Первые люди существовали под властью природы и в ее составе. Экологическая ниша этого вида определялась, прежде всего, его положением в трофических цепях. По своему положению в них человек является консументом (как и всякое животное) он — гетеротроф, а по типу своего питания — полифаг, т. е. способен питаться пищей разного рода. Многие современные исследователи и врачи считают, что природой человек более всего предназначен и приспособлен к потреблению растительной пищи — зерновых и плодов. Сейчас он занимает положение на вершине трофических пирамид, питаясь различными видами пищи.

Несмотря на свои уникальные свойства (разум, членораздельная речь, трудовая деятельность, социальное поведение и др.), человек не лишился биологической сущности, и все законы экологии для него справедливы полностью, как и для любого другого живого организма. Численность первых людей была невелика и контролировалась различными природными факторами согласно природной экологической нише: с одной стороны — хищниками, паразитами, с другой стороны — конкурирующими видами человекообразных, внутривидовой борьбой. Кроме того, со временем численность человека регулировалась истощением кормовых ресурсов. По возможностям географического распространения Homo sapiens является панойкуменным видом, т. е. способен обитать на различных участках и в различных климатических зонах планеты, хотя как биологический вид человек может обитать только в пределах суши экваториального пояса (в тропиках и субтропиках) до высоты 3—3,5 км над уровнем моря. Современный человек расширил границы местообитания: расселился во всех широтах, освоил глубины океана и космическое пространство. Однако за пределами первоначального ареала он может выжить не благодаря физиологической адаптации, а с помощью специальных защитных устройств и приспособлений (отапливаемые жилища, одежда, кислородные приборы и т. д.). Они имитируют среду обитания человека подобно тому, как это делается для экзотических животных и растений в зоопарках, ботанических садах, океанариях. Тем не менее, в отдельных случаях все экологические факторы воспроизвести не удается, как, например, гравитацию в космическом полете, после которого космонавтам требуется реадаптация.

Вид Homo sapiens характеризуется широкими способностями к адаптации и полиморфизмом (разнообразием в проявлении внешних признаков). Это позволило людям расселиться по всему земному шару, освоив различные климатические зоны, географо-биологические условия и приспособившись к различным диетам. С генетических позиций это означает, что человек обладает широкой «нормой реакции» многих генетических свойств.
Природные экосистемы, в которых живут отдельные популяции людей, многообразны. Исторически сложившиеся популяции, приспособленные к определенным природным условиям, условно называют экотипами. Представители различных экотипов отличаются телосложением, типом лицевого скелета, цветом кожи и волос, пищевыми адаптациями и энергетическим балансом, иммунитетом к определенным заболеваниям, а также скоростью роста и развития. Резкая перемена условий обитания для представителей любого экотипа означает стрессовую, а часто даже экстремальную ситуацию. Наиболее крупные адаптивные типы (экотипы): арктический, тропический, аридный (обитатели пустынь), высокогорный, средиземноморский, среднеевропейский. Типы географо-биологической среды обитания, определяющие экотипы человека, соответствуют основным климатическим зонам. Арктический человек отличается плотным телосложением, у него большее наполнение тканей кровью и выше процент жировой ткани, что увеличивает теплоизоляцию ядра тела. Для тропического человека характерно удлинение формы те­ла, повышение относительной поверхности испарения. Увеличено число потовых желез, что позволяет поднять интенсивность пото­отделения. Для горного человека характерно существенное увеличение размеров грудной клетки и теплопродукции, скорости кровотока и интенсивности кроветворения. Для каждого типа среды обитания, как правило, характерен определенный тип хозяйственного уклада людей. Наибольшая населенность, развитие городов, современный уклад жизни и хозяйства более всего характерны для зон смешанных лесов умеренного климатического пояса, а также для зоны тропических лесов и степей. В этих зонах сосредоточено 79% населения Земли. Еще 12% людей обитают в горных районах, а остальные климатические зоны заселены слабо. Возникновению древнейших цивилизаций на Ближнем Востоке способствовал комплекс благоприятных экологических условий, а именно: обилие воды, плодородные почвы, речные транспортные пути, благоприятный климат в долинах рек Египта и Месопотамии.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Акимова Т.А. Экология. Природа — Человек — Техника. Учеб. для вузов. / Акимова Т.А, Кузьмин П, Хаскин В.В.М.: ЮНИТИ-ДАНА, 2001. — 343 с.

  2. АкимоваТ.А., Хаскин В., Трифонова Т. Экология человека: Учеб. для вузов/ Акимова Т.А.,— М.: Экономика, 2008.-367с.

  3. Коробкин В. И. Экология: учеб. для вузов / Коробкин В. И . , Передельский Л. В.. — 7 — е изд. — Ростов н/Д: Феникс, 2004. — 576с .

  4. Николайкин Н. И. Экология: Учеб. для вузов / Н. И. Николайкин, Н. Е. Николайкина, О. П. Мелехова.- 3-е изд., стереотип. — М.: Дрофа, 2004. — 624 с.

  5. Одум Ю. Экология: В 2-х томах. Т. 1, т. 2, М.: Мир, 1986. Т. 1 — 328 с., т. 2 — 376 с.

  6. Реймерс Н.Ф . Экология (теории, законы, правила, принципы и гипотезы) / Реймерс Н. Ф. М. : Россия молодая, 1994. – 364 с.

  7. Радкевич В.А. Экология: учебник / В. А. Радкевич – 4 — е изд., стер. – Мн.: Высш. шк., 1998. – 159 с.

  8. Чернова Н. М. Былова А. М. Экология: учеб. пособие для студентов биол. спец. пед. ин — тов. / Чернова Н. М., Былова А. М. 2 — е изд., перераб. М.: Просвещение, 1988. — 272с.